If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+100x-300=0
a = 1; b = 100; c = -300;
Δ = b2-4ac
Δ = 1002-4·1·(-300)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-40\sqrt{7}}{2*1}=\frac{-100-40\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+40\sqrt{7}}{2*1}=\frac{-100+40\sqrt{7}}{2} $
| 7−15s=–10s−18 | | B+3b-b-8=52 | | 71-v=190 | | 5x-9=141 | | 229=188-v | | 3x=412 | | 4x+3(7)=-7 | | 2x+5+75+15=180+x | | 88=n+32 | | 23=d+17 | | 11c/5=8 | | 84=-4(4n+1)-8 | | 6g+10=58 | | 45=y-10 | | –(2p–4)=4(12–p) | | -11n=66 | | -3/x+2=-1 | | 8x+38=18+12x | | (7x+3)=(8×+1) | | 6v+5=59 | | 25a-2=-4(1-6a) | | 5x(x+15)+30=120 | | 3x-19=10x—23 | | 7c+8=78 | | 7x3=34 | | 4x+10=129 | | 4(p-75)=12 | | -11.2+2x=3.8 | | 4(p−75)=12 | | 1.5t2-50t-25000=0 | | 5x+(1+2x)=15 | | 3x-5=15.50 |